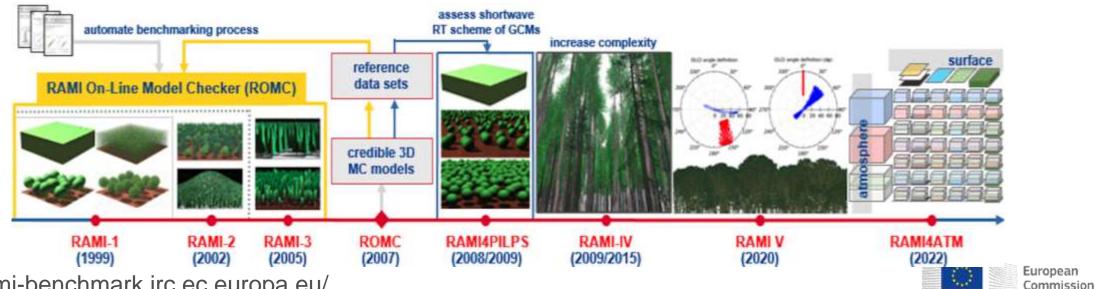
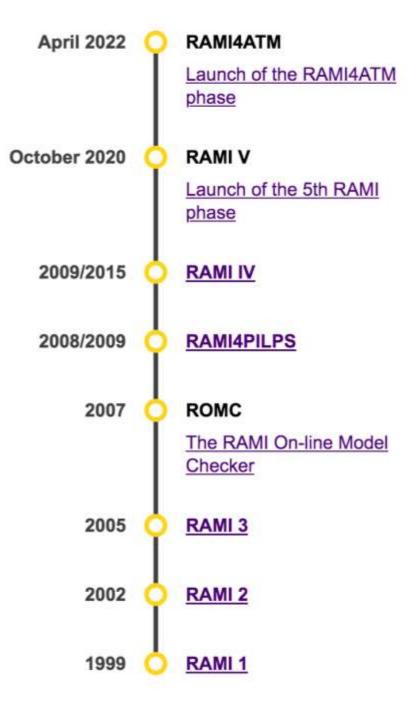
Radiation Transfer Model Intercomparison: Overview

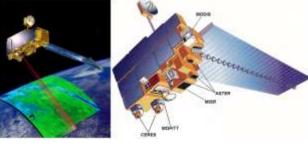

Nadine Gobron on behalf RAMI Team

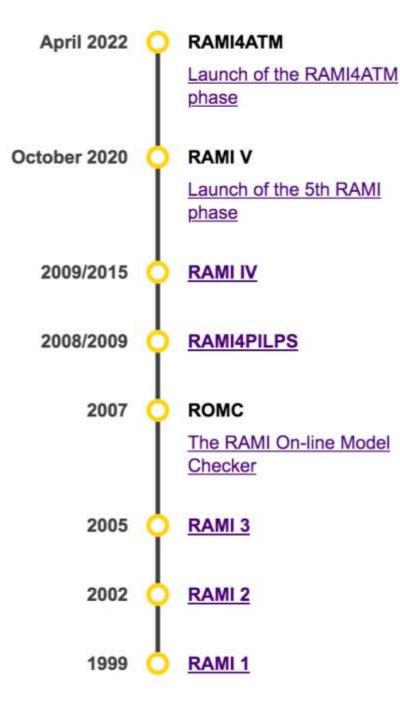
RAMI Workshop 2023

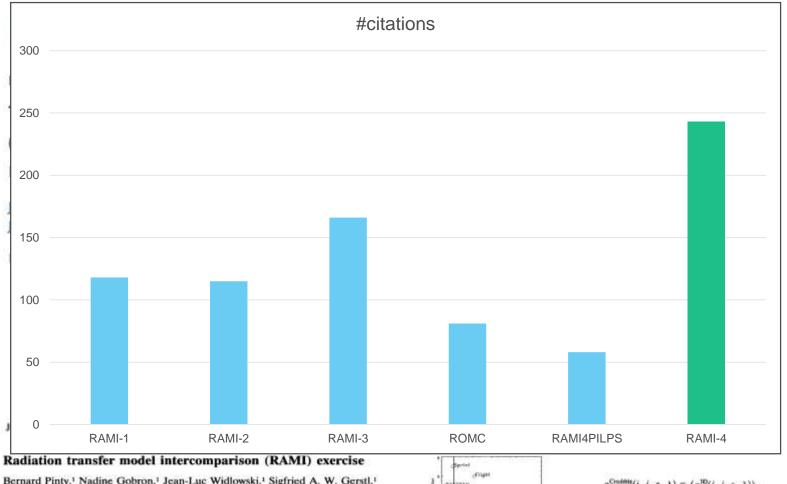


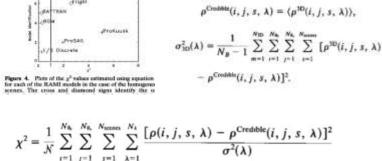
Radiation Transfer Model Intercomparison exercise

- (1D)-3D Radiative Transfer model independent assessment
- 20+ years activities (five phases, ROMC and RAMI4PILS)
- Blind concept
- Increased complexity of scenarios and experiments
- Oriented to vegetated surfaces
- Oriented to satellite and in situ observations
- RAMI4ATM: towards coupled atmosphere-surface scenes.

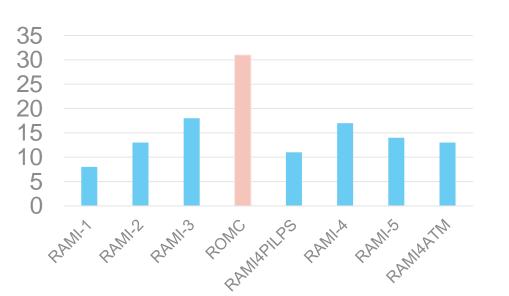

https://rami-benchmark.jrc.ec.europa.eu/



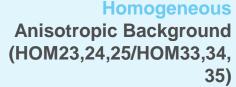

EnviSat (Image credit: ESA)



Bernard Pinty,¹ Nadine Gobron,¹ Jean-Luc Widlowski,¹ Sigfried A. W. Gerstl,¹ Michel M. Verstraete,¹ Mauro Antunes,² Cédric Bacour,³ Ferran Gascon,⁴ Jean-Philippe Gastellu,⁴ Narendra Goel,⁵ Stéphane Jacquemoud,³ Peter North,⁶ Wenhan Qin,⁷ and Richard Thompson⁸


Abstract. The community involved in modeling radiation transfer over terrestrial surfaces designed and implemented the first phase of a radiation transfer model intercomparison (RAMI) exercise. This paper discusses the rationale and motivation for this endeavor, presents the intercomparison protocol as well as the evaluation procedures, and describes the principal results. Participants were asked to simulate the transfer of radiation for a variety of precisely defined terrestrial environments and illumination conditions. These were abstractions of typical terrestrial systems and included both homogeneous and heterogeneous scenes. The differences between the results generated by eight different models, including both one-dimensional and three-dimensional approaches, were then documented and analyzed. RAMI proposed a protocol to quantitatively assess the consequences of the model discrepancies with respect to application, such as those motivating the development of physically based inversion procedures. This first phase of model intercomparison has already proved useful in assessing the ability of the modeling community to generate similar radiation fields desnite the large panoply of models that

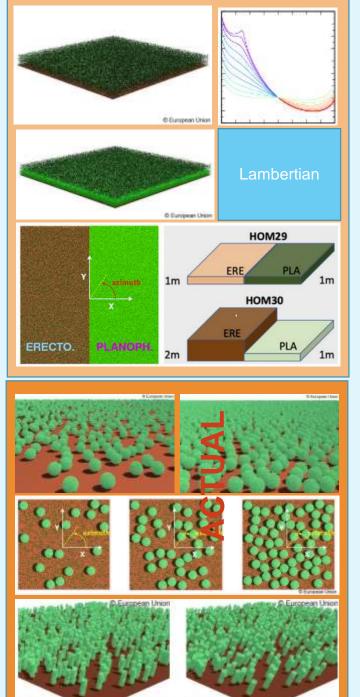
RT Models


RAMI-V: 14 models – 8 new in RAMI

Model	Participants	Reference	
dart	Yingjie Wang	Gastellu-Etchegorry et al. (1996)	
dirsig5	Adam Goodenough	Goodenough & Brown (2017)	
Discret	Nadine Gobron	Gobron et al. (1997)	
eradiate	Sebastian Schunke	Eradiate.eu (Copernicus Community Model - 2021)	
flies	Hideki Kobayashi	Kobayashi & Iwabuchi (2008)	
frt13 (*)	Andres Kuusk	Kuusk & Nilson (2000), Kuusk et al. (2010, 2014)	
less	Jianbo Qi	Qi et al. (2019)	
librat	Nial Oregon	Disney et al. (2009)	
randerjay	Martin van Leeuwen	van Leeuwen M. et al. (2021)	
rapid	Huaguo Huang	Huang et al. (2018a, 2018b)	
raytran	Christian Lanconelli	Govaerts & Verstraete (1998)	
spartacus	Robin Hogan	Hogan et al. (2018)	
starter1	Zeng Yelu	Zeng et al. (2018) and Wu et al. (2021)	
wps	Feng Zhao	Zhao et al. (2015, 2016)	

* frt13 is an updated version of the model frt (RAMI-IV)

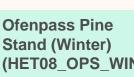
ABSTRACT


Two-layer canopy (HOM26,27,28/HOM 36,37,38)

Adjacent canopies (HOM29,HOM30)

Heterogeneous Anisotropic background (HET10,11,12/HET20,21,22)

Two-layer canopy (HET16,17,18/HET26,27,28)


> **Constant Slope** (HET23,24/HET33,34)

Canopies

Järvselja **Pine Stand** (Summer) (HET07 JPS SUM)

(HET08 OPS WIN)

Järvselja **Birch Stand** (Winter) (HET15_JBS_ WIN)

Wellington Citrus Orchard (HET14 WCO _UND)

Agricultural crops: Short **Rotation Forest** (HET16_SRF_U ND)

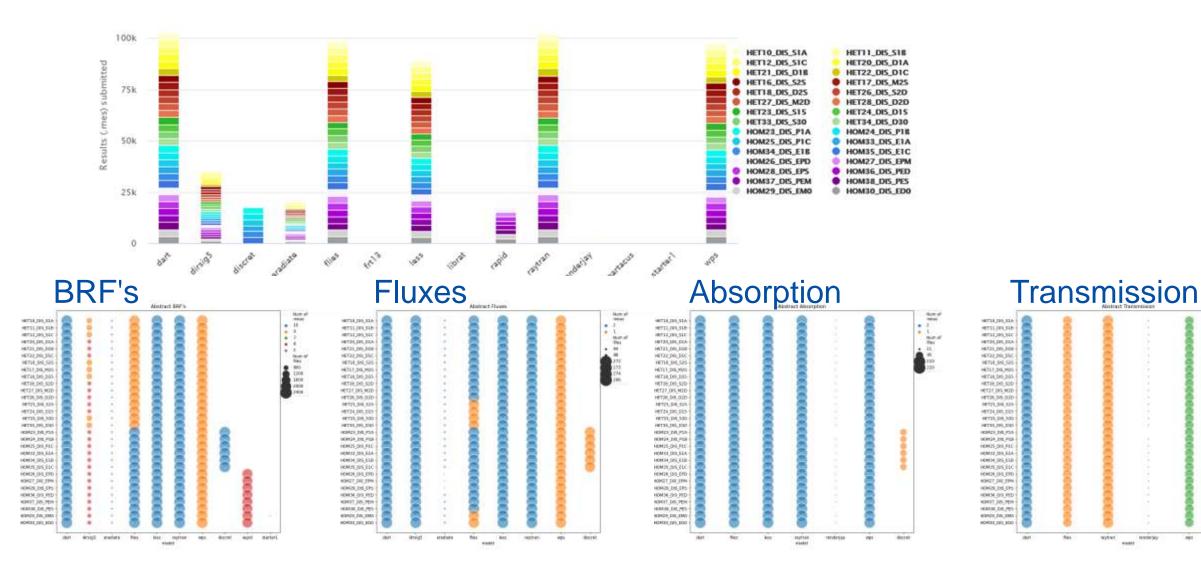
Järvselja Birch

(HET09 JBS S

Stand

UM)

(Summer)

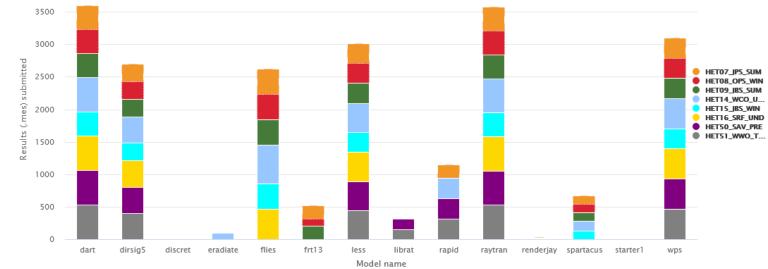

Savanna pre-fire (HET50_SAV_PRE)

Wytham Wood (HET51_WWO_TLS)

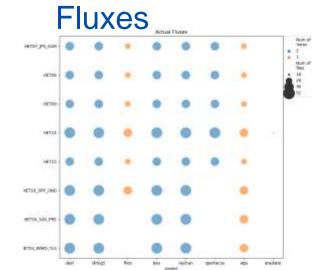
> European Commission

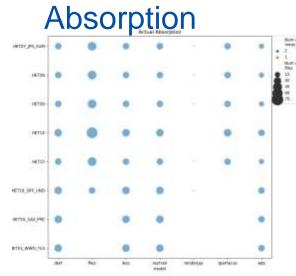
Scenes per Models: Abstract canopies

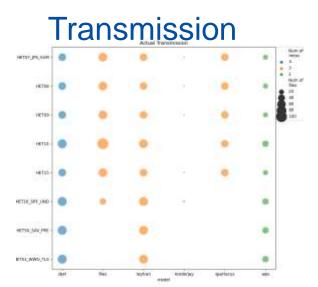
+ 3


dorat

14

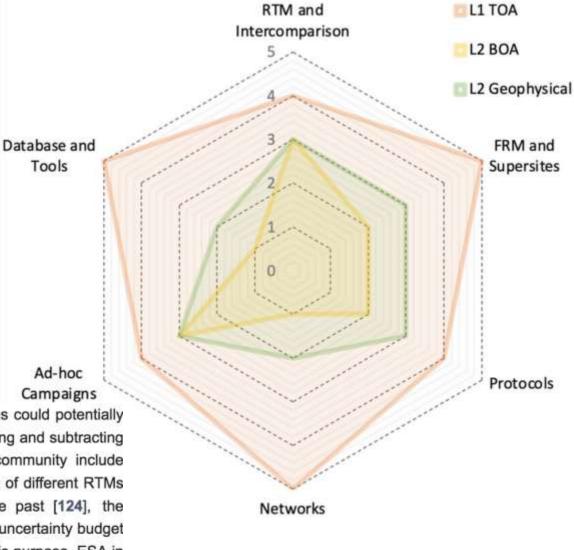

hybrat


Apresident (Mary


Scenes per Models: Actual canopies

RAMI X Cal/Val

Open Access Review

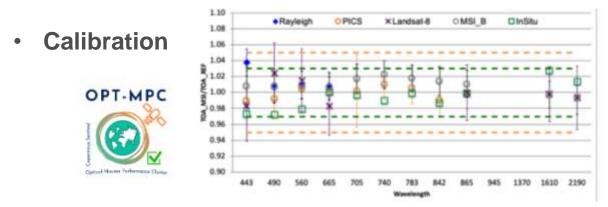

European Space Agency (ESA) Calibration/Validation Strategy for Optical Land-Imaging Satellites and Pathway towards Interoperability

by ② Fabrizio Niro ^{1,*} ^[2], ③ Philippe Goryl ² ^[2], ③ Steffen Dransfeld ² ^[2], ③ Valentina Boccia ² ^[2], ③ Ferran Gascon ² ^[2], ③ Jennifer Adams ³ ^[2], ③ Britta Themann ² ^[2], ③ Silvia Scifoni ¹ ^[2] and ③ Georgia Doxani ¹ ^[2]

- ¹ Serco SpA for European Space Agency (ESA), European Space Research Institute (ESRIN), 00044 Frascati, Italy
- ² European Space Agency (ESA), European Space Research Institute (ESRIN), 00044 Frascati, Italy

³ RHEA System SpA for European Space Agency (ESA), European Space Research Institute (ESRIN), 00044 Frascati, Italy

Author to whom correspondence should be addressed.



European Commission

The adoption of the 6SV RTM [119] for generating the "ground-truth" over AERONET stations could potentially induce biases when assessing the accuracy of those codes, which use different RTMs for estimating and subtracting the atmospheric contribution from the TOA signal. Typical RTMs being used by the ACIX community include LibRadTran [122] and MODTRAN [123]. Overall, there is a need of inter-comparing the accuracy of different RTMs against a community-agreed benchmark algorithm. While similar exercises were done in the past [124], the benchmarking should now be repeated to assess how much RTM discrepancies propagate in the uncertainty budget of the output SR products, with focus on the current and future optical land imaging sensors. To this purpose, ESA in coordination with the EC, is currently supporting and promoting the RAdiation transfer Model Intercomparison for Atmosphere (RAMI4ATM) initiative [125]. The primary goal of RAMI4ATM will be to document the variability between coupled surface–atmosphere RTMs under well-controlled, but realistic, conditions. Within RAMI4ATM, the surface properties will be defined by the simple homogeneous scenes, as defined within the RAMI-V exercise [126].

RAMI4ATM

Many radiative transfer models have been developed and are widely used in Earth Observation:

- Atmospheric correction or sensitivity analyses
- The uncertainties of these models have not been clearly assessed in **realistic usage conditions** when supporting typical Earth Observation applications by remote sensing scientists.

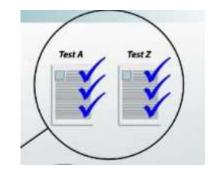
RAMI4ATM was dedicated to the benchmarking of **coupled surface-atmosphere** radiative transfer models.

https://rami-benchmark.jrc.ec.europa.eu/

RAMI4ATM models/inst = 16

Model	#	Institution	Participants	Reference
6sv	Second Simulation of the Satellite Signal in the Solar Spectrum v2.1		Jorge VICENT SERVERA	S.Y. Kotchenova et al. (2008), J. Vicent et al. (2020)
modtran6	MODerate resolution atmospheric TRANsmission	Magellium		A. Berk et al. (2014), L. Guanter et al. (2009)
sbdart	Santa Barbara DISORT Atmospheric Radiative Transfer			P. Ricchiazzi et al. (1998), J. Vicent et al. (2020)
6sv2.1	6SV v2.1 (2014)	EC-JRC	Christian LANCONELLI	S.Y. Kotchenova et al. (2008)
sixsnad	Modified 6SV, RT coupled model used for ESA		Nadine GOBRON	S.Y. Kotchenova et al. (2008); Gobron et al. (1997)
eradiate	A cal/val-oriented 3D radiative transfer model	RAYFERENCE	Nicolas Misk	Reference: https://www.eradiate.eu
rtmom	Radiative Transfer Matrix Operator Method	RAIFERENCE		Y. Govaerts (2006)
pnims	P olarized radiance I mproved M ultiple and S ingle scattering (PnIMS)	GRASP	Masahiro Momoi	Lenoble et al. (2007) Momoi et al. (2022) Nakajima and Tanaka (1988)
waqh	Waquet and Herman radiance correction			Lenoble et al. (2007), Waquet and Herman (2019)
model-iao	Model of V.E. Zuev Institute of Atmospheric Optics SB RAS	IAO	Zhuravleva Tatiana	T. Zhuravleva (2008), T. Zhuravleva and I. Nasrtdinov (2018)
smartg	Speed-Up Monte Carlo Advanced Radiative Transfer using GPU	HYGEOS	Mustapha MOULANA	Ramon et al. (2019)
smartmom	Simulated measurement of the atmosphere using radiative transfer based on the Matrix Operator Method	JPL	Sanghavi Suniti	Sanghavi, S., et al. (2013)
vsmartmom	Vectorized Simulated measurement of the atmosphere using radiative transfer based on the Matrix Operator Method	JPL		Sanghavi, S., et al. (2014)
sos-abs	Successive Orders of Scattering code including gas absorption	CS Group	Stéphan Gwendoline	J. Lenoble, et al. (2007)
pydome	python library for radiative transfer computations	DLR	Dmitry Efremenko	A. Doicu and T. Trautmann (2009)
wps	Weighted Photon Spread	Beihang University	Feng Zhao	Zhao et al. (2022, 2015)

Web Site https://rami-benchmark.jrc.ec.europa.eu/


Log in DEnglish

European Commission

HETON_MAS_HOM_2006	940.40	atisiat	154113
		del Talante	306.112
HET09_385_5LHH_00H	665.00	100	100
NCTON_385_8494_010	681.33	at and a second s	attening
		ini.	344
HL109_MS_SUB_011	205.710	Thinks	1254113
		tak pilaist	128
HET09_JMS_50H_012	753.23	10k	308

Commission					
About the European	European	Logged in 🗸 🖾 English Placeholder test Search			
RAMI Ho	Commission Commission				
RAdiation trans	RAMI website				
	Home Past >	European Commission Q. Logged in V 🖾 English Placeholder taxt. Search			
Home Past ph	About the European Comm				
April 2(Model Subn Phase: RAMI V	Past phase The new Plast The new Plast Coldance > How to participate News & events A >			
October 2	This table is showing the You are advises to check submission. Click on <u>RAMI-V Submiss</u>	About the European Commission > RAME > Phase: RAME V > Proliminary results v1.0 (Cheuvenets criterion) Preliminary results v1.0 Chauvenets criterion			
2009/2	All form fields identified	This table summarizes different between model submission every weekly download,			
2008/2	Model O New model Allowed chan: [a-z, 0-8, -]	These tables summarizes the results of the Chauvenet's orbanic as applied to specific combination of <scene>_<band> and <geometry>. Calls colors indicate that your model presented between (0-10[%, [10-25]% and >25% of outliers for the specific experiment. Call links bring you to a qualitative graphical representation of the results with other models blindly reported in grey. Average and standard deviation of all models and Chauvenet thresholds can be selected by checking the corresponding combo. Belect version:</geometry></band></scene>			
	(min: 3, max: 20 chans) discret	 2021-12-17 to show results related to the first preliminary analysis; 			
		2022-02-16 to show results related to the last deadline; 2022-06-17 *** and 2022-08-29 to show neults with some models corrections; 2022-08-29 and 2022-09-12: SD with ingNum/ValidModels-1; 2022-08-29 and 2022-09-12: SD with ingNum/ValidModels-1;			
		2023-02-03 (latest version of results;			

Internal Consistencies

- Energy conservation (λ)
- BRF consistency (Λ)

• BRF vs Albedo (**NEW**) (
$$\Lambda$$
)

$$\Delta F = 1 - T(1 - \alpha) - A - R$$

$$\Delta F_2(\zeta, \lambda, \Omega_i, \Omega_v) = \rho_{tot} - (\rho_{co} + \rho_{uc} + \rho_{mlt})$$

$$\rho_0, \Theta, k = f^{-1}(\rho_j(\theta_i, \theta_v, \phi))$$

- The BRF simulations are used to optimize the RPV function to obtain the corresponding BRDF parameters. *DHR* and *BHR* are then recomputed by geometrical integration and compared with the submitted DHR, BHR.
- Albedo vs (F^{\uparrow}/F^{\downarrow}) Top-of-Canopy (λ)
- Spectral consistency (un-collided BRF vs Input surface properties)

Applying ISO-13528 to Canopy RT Models

- Ensure the homogeneity and stability of the samples that are to be analyzed by the participants
- Assign a reference value against which the bias of the participants can be determined → ISO-13528 recommends to use consensus values derived either from the simulations of <u>selected expert models</u> or else from the participants of the proficiency test itself.
- Specify a tolerance criteria allowing to determine whether deviations from the reference are significant.

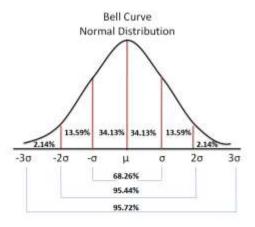
Widlowski J.-L., et. al. The fourth Radiation Transfer Model Intercomparison (RAMI-IV): Proficiency Testing of Canopy Reflectance Models with ISO-13528. (2013), Journal of Geophysical Research - Atmospheres, 118, D09111, 13, DOI: <u>10.1002/jgrd.50497</u>.

Histograms of z' statistics

A priori reference (when possible) Tolerance: 3 & 5 %

$$z'(m;\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i}) = \frac{x_*^m(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i}) - X_*(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i})}{\sqrt{\hat{\sigma}^2(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i}) + u_{X_*}^2(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i})}}$$

 $x^{m_{*}}$ is the radiative quantity of interest simulated by model


X_{*} is the "reference" value

 $u_{X^*}^2$ standard uncertainty of the **assigned reference value**

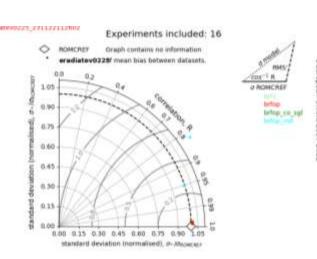
 σ proficiency criteria

Widlowski J.-L., et. al. The fourth Radiation Transfer Model Intercomparison (RAMI-IV): Proficiency Testing of Canopy Reflectance Models with ISO-13528. (2013), Journal of Geophysical Research - Atmospheres, 118, D09111, 13, DOI: <u>10.1002/jgrd.50497</u>.

@Rapporteur: Note to ask 'Which value do we really need?"

 $\mu: \text{Mean Value} \quad \sigma : \text{Deviation}$

Rules for the reference – Custom


- 3D Published Used ROMC Validation 99% ?
- Consistency check depend on the measurements
 BRF types
- BRF consistency OK
- Spectral consistency OK
- Model-to-model : < 1-2% overall at least 2 models
- Participation : at least 80%

DHR/BHR - FAPAR

- Energy conservation OK
- etc

@Rapporteur: Note to ask 'Which rules do we agree?"

Do we have reference values ?

Reference – Custom (Credible)

 $\delta < 2\%$

Participation = 100%

Reference Model Dependence (RMD)

model-specific reference values = {mod_p if n=76}-m @Rapporteur: Note to ask 'Which values do we agree for σ proficiency criteria ?"

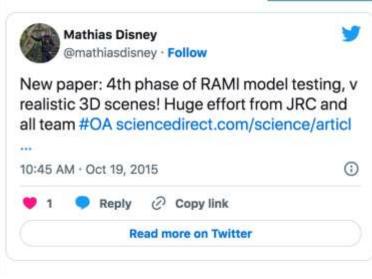
$$z'(m;\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i}) = \frac{x_*^m(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i}) - X_*(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i})}{\sqrt{\hat{\sigma}^2(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i})} - u_{X_*}^2(\lambda,\zeta,\Omega_{\nu},\Omega_{\rm i})}$$

 $u_{X^*}^2$ standard uncertainty of the assigned reference values

 σ proficiency criteria for BRF = **3%** or 5 %

Canopy albedo (R) and Foliage Absorption (A) \leftarrow GCOS ECVs requirements

Others DHP → Gap Fraction → LAI ← GCOS ECVs requirements


Summary

• RAMI is linked to EO space life.

 Preparation of each phase's scenarios and deep dive analysis required huge work.



08 June 2023

COPERNICUS: A EUROPEAN SUCCESS STORY IN SPACE

Thank to Copernicus as the sponsor of the workshop !

ANNIVERSARY OF COPERNICUS

Keep in touch

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

Thank you

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

