RAMI-V: Results

Christian Lanconelli, Nadine Gobron & Monica Robustelli and RAMI-V participants

RAMI Workshop 2023

CTU

New RAMI-V Actual Scenes

Savanna pre-fire (HET50_SAV_PRE), South Africa

Wytham Wood (HET51_WWO_TLS), UK

- **Semi-empirical** scene based on actual sampling campaign (Disney et al., 2011)
 - Predefined model trees
 - Sparse vegetation (3 tree types, d=599/ha)
 - Grass covered surface (200k plants/ha)
- **Empirical** scene based on the TLS sampling after Calders et al. (2018)
 - Reshaped to flat surface (all trees to z=0) to guarantee energy conservation
 - Cropped to 1-ha, 7 tree types, LAI overest. (buggy scene)
 - Surface: area averaged spectral properties

RAMI-V id	Name	Plants Density [ha ⁻¹]	Scene LAI $[m^2/m^2]$	Fractional cover [%]	Maximal height [m]	Primitives in the scene
HET50	UCL Savanna	599 (trees)	0.09	-	11.31	4,718,130 (tri)
		2×10^5 (grass)	0.0026	-		1,400,000 (cyl)
HET51	UCL Wytham Wood	528 (crowns files)	7.59		around 30 m	6,124,335 (tri)
		558 (stems files)	-	-	-	1,715,905 (ccyl)

Spectral Configuration

- 13 spectral bands were selected from 440 nm to 2200 nm
- Combination of OLCI, MSI and MODIS bands
- brf*, bhr, dhr computed for all bands, fabs and ftran only in the bands pertaining to PAR
- All spectral scatterings properties were provided

$$X = \frac{\int_0^\infty S_{0\lambda} R_\lambda x_\lambda d\lambda}{\int_0^\infty S_{0\lambda} R_\lambda d\lambda}; X = Tran, Refl$$

	OLCI	λ_c (nm)	MSI	λ_c (nm)	MODIS	$\Delta\lambda$ (nm)	RAMI-V	
1	003	442.5	M01	443	MD3	459-479	003	
2	004	490	M02	490			004	
3	006	560	M03	560	MD4	545-565	006	
4	008	665	M04	665	MD1	620-670	008	
5	010	681.25					010	
6	011	708.75	M05	705			011	
7	012	753.75	M06	740			012	
8			M08	842			M08	
9	017	865	M8a	865	MD2	840-876	017	
10					MD5	1230-1250	MD5	
11			M11	1610	MD6	1630-1650	M11	
12					MD7	2105-2155	MD7*	
13			M12	2202			M12*	

fabs* ftran*

Angular Configuration

- RAMI-V was designed to be oriented to real satellite observation geometries
- For abstract scenes the observation angles were computed for seven different latitudes (30°S to 60°N in steps of 15°; LON=22.5°) for Jan, Apr, and Jul for OLCI, MSI and MODIS channels
- Meas: brf_sat uses all these configurations, while brf*, dhr, and fabs ftran uses their period averaged summaries

ABSTRACT scenes

Scene	Latitude	Geometry (S3 OLCI)	Geometry (Terra MODIS)	Geometry (S2 MSI)
All Abstract	-30.0	<u>olci_30S.txt</u> (51)	<u>modis_30S.txt</u> (364)	<u>msi_30S.txt</u> (9)
All Abstract	-15.0	<u>olci_15S.txt</u> (44)	<u>modis_15S.txt</u> (322)	<u>msi_15S.txt</u> (9)
All Abstract	0.0	<u>olci_00N.txt</u> (41)	modis_00N.txt (81)	<u>msi_00N.txt</u> (9)
All Abstract	15.0	<u>olci_15N.txt</u> (45)	<u>modis_15N.txt</u> (323)	<u>msi_15N.txt</u> (9)
All Abstract	30.0	<u>olci_30N.txt</u> (52)	<u>modis_30N.txt</u> (364)	<u>msi_30N.txt</u> (9)
All Abstract	45.0	<u>olci_45N.txt</u> (65)	<u>modis_45N.txt</u> (364)	<u>msi_45N.txt</u> (19)
All Abstract	60.0	<u>olci_60N.txt</u> (66)	<u>modis_60N.txt</u> (364)	<u>msi_60N.txt</u> (16)

Table 2: input geometries to be used for all abstract canopies

Angular Configuration

 Actual scenes were instead associated to fixed coordinates accordingly to the biome type.

Scene	Site	State	Coord Lat, Lon [°]	Jan-Feb [°]	Apr-May [°]	Jul [°]	d_{S3}	d_{MOD}	d_{S2}
HET07, HET09	Järvselja	Estonia	58.3N, 27.3E	-	56 153	41 147	75	97	9
HET08, HET15	(winter)			76 155	56 153	Ξ.			
HET14	Wellington	South Africa	33.6S, 18.9E	42 076	60 045	67 041	46	57	18
HET16	Zerbolo	Italy	45.3N, 8.9E	71 153	36 137	34 130	54	68	12
HET50	Skukuza	South Africa	25.0S, 31.5E	37 089	50 051	60 041	42	55	14
HET51	Wytham	UK	51.7N, 1.3W	75 154	46 147	35 138	63	80	8

Figure 2: Time series of the Solar and Viewing angles for MODIS (circles), OLCI (squares) and MSI (triangles) over Järsveljia (black), Wytham Wood (cyan), Zerbolo (green), the northern hemisphere sites, Skukuza (red) and Wellington (blue), the southern sites. The

ACTUAL scenes

Scene	Geometry	Num of	Geometry	Num of	Geometry	Num of
Site	(OLCI)	cases	(MODIS)	cases	(MSI)	cases
HET07_JPS_SUM Järvselja	<u>olci jar.txt</u>	75	<u>modis_jar.txt</u>	97	<u>msi_jar.txt</u>	9
HET08_OPS_WIN Järvselja	<u>olci jar.txt</u>	75	<u>modis_jar.txt</u>	97	<u>msi_jar.txt</u>	9
HET09_JBS_SUM Järvselja	<u>olci_jar.txt</u>	75	<u>modis_jar.txt</u>	97	<u>msi_jar.txt</u>	9
HET15_JBS_WIN Järvselja	<u>olci_jar.txt</u>	75	<u>modis_jar.txt</u>	97	<u>msi_jar.txt</u>	9
HET14_WCO_UND Wellington	<u>olci_wel.txt</u>	46	modis_wel.txt	57	<u>msi_wel.txt</u>	18
HET16_SRF_UND Zerbolo	<u>olci zer.txt</u>	54	modis_zer.txt	68	<u>msi_zer.txt</u>	12
HET50_SAV_PRE Skukuza	<u>olci_sku.txt</u>	42	modis_sku.txt	55	<u>msi_sku.txt</u>	14
HET51_WWO_TLS Wytham Wood	<u>olci_wwo.txt</u>	63	<u>modis_wwo.txt</u>	80	<u>msi_wwo.txt</u>	8

RAMI-V Measurements

- BRFs: Principal and Orthogonal plane, Azimuthal ring (37°), Actual satellite geometries (MSI, OLCI, MODIS)
 - single and multiple scattering also resolved individually for PP and OP
- Albedo (directional-hemispherical and bihemispherical reflectance)
- Absorption (total and foliage), transmission through the canopy and transects.
- Digital Hemispherical Photography (DHP)

RAMI experiments

• <Experiment> = <scenario> + <measurement>

- <Scenario> = <scene> + <spectral> + <geometry>
- 30+8 scenes, 13 bands, 21 geoms (abstract) / 2,3 (actual),
 20 measurements
- ~106.5 K experiments in RAMI-V (3.5 K Actual)
- **14** participants
- ~600 K .mes files

Measurements performed by Models

	BRFs							Fluxes	1	Absorption	Transmission	BRFs									Fluxes		Ab	sorptio	n 1	ransmission	fisheye
Model Name	brfpp	brfop	uc	co	mit	brfazim	brfsat	bhr	dhr	fabs	ftran	brfpp	brfop	uc	co	x (3	mit	brfaz	im	brfsat	bhr	dhr	fat)\$	1	tran	thp
dart	1	1	1	1	1	J	V	1	V	~	1	1	<i>x</i>	1	¥		1	1		1	1	~		4		~	1
dirsig5	1	×	2	~	~	~	-	~	~		-	~	×	4	~		4	~		2	~	<i></i>		2		1	7÷
discret	1	1	1	1	1	1	1	÷:	1	1	1	100 C	Model n	ame	BRI	F (tot	t and	filtere	d)	BRF (to	t only)	Flux	es	572		Fisheye	Ptot
eradiate	V -	~	1	1	142	1	-	1	×.	2	-	1	dart	anc	pp Ø	op	uc	co n	ılt Ø	azim Ø	sat Ø	bhr	dhr	fabs Ø	ftran Ø	thp Ø	%
flies	1	J.	1	1	1	1	J	1	1	1	~	1	raytran		00	88	8	0	B	00	Ø	Ø	88	00	Ø	8	99.4 86.2
frt13	а. С	2	2	2	12	(G)	2	-	~	2		~	less		0	0	Ø	0	8	0	Ø	Ø	0	0	-	0	83.9
less	1	1	1	1	~	×.	1	~	1	1	30	1	dirsig5 flies		1	1	1	J .	1	2 1	1	-	1	1	1		75.2 60.8
librat	2	÷.	2	2	2	1	8	2	4	-	2	~	rapid spartaci	18	1	1	1	· ·	/	-	~	5	5	Ĵ	Ĵ	2	32.0 18.6
rapid	×	1	V	1	1		æ	÷	×		(#)	1	frt13		1	1	~	1.	1			-	ः इ	2	-		14.5
raytran	1	<i>v</i>	~	4	1	1	~	1	×	4	1	1	librat eradiate		1	1	1	1	-	1		1	1	-	*	-	8.7 2.8
renderjay	2		38	~				£.		~	~	- 18 - 14	renderja	y	*	-	1	¥.	-			-		1	1	10	0.9
spartacus		-	5	-			8	- 22			-	590) -	4	(a)	2		-	2		4	4	~		4		×	14
starter1	V.	~	8	*	R		1	÷.)	*	÷	4.	-		98			×.	-		2		2					
wps	1	1	4	¥.	1	1	÷	5	~	~	~	1	4	4	~		<	1		а 2	12	~		×		~	2

ABSTRACT scenes

ACTUAL scenes

* Complement to the table P_{tot} *discret: 16%; starter1: 0.5%*

Internal Consistencies

• Energy conservation (λ) $\Delta F = 1 - T(1 - \alpha) - A - R$

	BR	Test	Name	Required Measurements	М	Bands	r4	$-\rho_{ml}$
		r5cc1	Energy conservation	dhr (bhr), ftran, fabs	5	PAR	y+	1 11000
	DD	r5cc2	BRF consistency	brfpp(op), co, uc, mlt	9	All	у	
	DK	$r5cc2_1$	BRF vs Albedo	brfpp(op), dhr (bhr)	9(10?)	All	n	
		$r5cc2_2$	Albedo vs $(F^{\uparrow}/F^{\downarrow})_{TOC}$	dhr (bhr), ftran_tot_vprof	4	PAR	n	
	• 1	r5cc3	Spectral consistency	brfpp(op)_uc_sgl	Х	All	r	е
	• T c	r5cc3 Table 6:	Spectral consistency List of the consistency cl	brfpp(op)_uc_sgl	X se. M is	All the num	r ber o	f
9	1	models fo	or which the test was app MIIIV phases $(x/x/x)$ star	hed. The last column specifies	if a test	was inh	erited	
		from RAL	MI-IV phase: $(y/n/r)$ sta	nd for (yes/no/revised). The 4	- symbol	indicate	s that	
	Alb	an extend	led test with respect to R	AMI-IV phase has been implei	nented.			

• Spectral consistency (un-collided BRF vs Input surface properties).

$$|\Delta_{S}(m,\Omega_{v})| = \frac{1}{N_{S}(m)} \sum_{\zeta=1}^{N_{\zeta}^{m}} \sum_{i=1}^{N_{\Omega_{i}}^{m}} \left| \frac{\rho_{bgd}(\lambda_{1},\zeta,\Omega_{v},i)}{\rho_{bgd}(\lambda_{2},\zeta,\Omega_{v},i)} - \frac{\rho_{uc}^{m}(\lambda_{1},\zeta,\Omega_{v},i)}{\rho_{uc}^{m}(\lambda_{2},\zeta,\Omega_{v},i)} \right|$$

 Results in %, *flies* analysis to be updated for both energy and BRF Consistency. The r5cc2 test produces results in line with other models on the last revision.

Internal Consistencies

$$\Delta F_m = \frac{1}{N_F(m)} \sum_{\lambda=1}^{N_\lambda^m} \sum_{\zeta=1}^{N_\zeta^m} \sum_{i=1}^{N_{\Omega_i}^m} \Delta F_m(\lambda, \zeta, i)$$

Test	Name			R	equir	ed Me	easure	ements	М	[Bands	r4	N	RT Model	ΔF_m	ΔF_{50}	$ \Delta F_{max} $	$\sigma_{\Delta F}$	f_N
r5cc1	Energy co	onserva	ation	d	hr (bl	hr), f	tran,	fabs	5		PAR	y+		dart	0.15	1.1E-4	(-) 4.6	0.6	3440
r5cc2	BRF cons	istenc Ibedo	у	b	rfpp((op),	co, uo dhr (1	c, mlt bhr)	9 9((10?)	All All	y n		flies	-16.6	-15.7	(-) 96.4	17.2	3340
r5cc22	Albed vs	(F^{\dagger})	F^{\downarrow})TO	a di	hr (b	hr). f	tran	tot_vpr	of 4	(10.)	PAR	n 🔊		raytran	0.50	4.0E-2	(+) 48.3	3.1	3440
r5cc3	Spectr o	onsist	ency	b	rfpp	(op)_1	ic_sg	1	X		All	r		wps	0.17	0.18	(-) 4.40	0.68	3250
														spartacus(*)	7.4E-5	4.7E-5	(+) 6.9E-4	1.5E-4	80
	RT model	Het	erogene	ous	Hoi	mogene	ous	Actual	Scale	1					RT Model dart flies	-0.0 $1.0 \cdot 10^{-4}$	${T_2\over 03\pm 0.31\ \pm 0.024^1}$		
	dart	6 4	4 7	5.0	-3.7	-11	0.24	2.5	10^{-10}	÷					raytran	$-4.3 \cdot 10^{-5}$	5 ± 0.003		
	dirsig5	-	-	-	-0.1		-	-2.6	10^{-2}						spartacus	-0.(04 ± 0.04		
	discret		-	20	1.0	23	-	-	10^{-9}				Table 10:	Average and star	ndard deviat	ion of the	difference betwee	en ftran t	ot vprof
	flies	12.6	2.7	5.4	6.4	0.3	1.6	7.9	10^{-2}	<			and the co	prresponding bhr	(or dhr) (1) The valu	es obtained for J	Ties were f	iltered to
	frt13	-	-	-	-		-	2.9	10^{-9}				consider o	nly differences bel	ow 10% (bei	ng them 24	00, and the rema	aining meas	airements
	less	0	0	0	0	0	0	0	- 10				were flagg	ed as suspicious).	10/0 (00)		asy and the rolling		al onionio
	rapid	-			(7)	28	8.7	4.5	10-10				and the second particular pa	ere can preserve and to					

Table 8: BRF consistency. Average of the absolute difference between the sum and the total BRF, subdivided by scene category. The last column contains the scale factor of the values given in the previous columns.

-3.1

5.8

-120

5.3

18

4.9

-7.0

3.0

raytran

wps

-18

39

19

20

-21

22

 10^{-9}

 10^{-6}

European Commission

• Results in %, *flies* analysis to be updated for both energy and BRF Consistency. The r5cc2 test produces results in line with other models on the last revision.

Internal Consistencies: r5cc2_1

Test	Name	Required Measurements	М	Bands	r4
r5cc1	Energy conservation	dhr (bhr), ftran, fabs	5	PAR	y+
r5cc2	BRF consistency	brfpp(op), co, uc, mlt	9	All	у
r5cc21	BRF vs Albedo	brfpp(op), dhr (bhr)	9(10?)	All	n
$r5cc2_2$	Albedo vs (F^{\uparrow}/F)	dhr (bhr), ftran_tot_vprof	4	PAR	n
r5cc3	Spectral consistency	brfpp(op)_uc_sgl	х	All	r

Figure 8: Distribution of the bias of DHR as obtained by integration of the BRDF function obtained from the and the DHR as provided by the models over all latitudes (geometries) and bands.

 Results in %, *flies* analysis to be updated for both energy and BRF Consistency. The r5cc2 test produces results in line with other models on the last revision.

Internal Consistencies: r5cc1 (additional slide)

Test	Name	Required Measurements	М	Bands	r4
r5cc1	Energy conservation	dhr (bhr), ftran, fabs	5	PAR	y+
r5cc2	BRF consistency	brfpp(op), co, uc, mlt	9	All	у
r5cc21	BRF vs Albedo	brfpp(op), dhr (bhr)	9(10?)	All	n
r5cc2 ₂	Albedo vs $(F^{\uparrow}/F^{\downarrow})_{TOC}$	dhr (bhr), ftran_tot_vprof	4	PAR	n
r5cc3	Spectral consistency	brfpp(op)_uc_sgl	X	All	r

Preliminary results

Feedback Phase from 12/2021 to 05/2023

- A **feedback phase** on preliminary results was established to highlight major issues/inconsistencies due to wrong input rather than model uncertainty.
- In a 100k+ experiments scenario, with 14 participant models, it was necessary to adopt criteria to identify the inconsistency as much automatically as possible.
- We adopted a simple *Chauvenet* criteria being the participation to common experiment ranging between 3-8 models.

Feedback Results

6

7

8

9

10

11

12

- 13 Chauvenet: indicates a threshold *t*, based on 14 15 the normalized sample standard deviation which is scaled by a participation factor p_N
- Possible outlier $\rightarrow x_i \overline{x} > p_N \sigma$ •
- Dark gray shadow indicates $\pm \sigma$ and the lightgray the N-scaled threshold $\pm p_N \sigma$
- We than raised a yellow/red alert for any BRF experiment with more than 10%/25% of possible outliers
- Weakness of the method: a) average depends on the outlier values. No operational iteration performed. b) Possible Clustering of models not handled. C) might be improved by setting a minimum acceptable error (1%).

Feedback Phase (Chauvenet)

- Examples of wrong data driven average for the BRF in the azimuth ring
- Not optimal but rather simple and pragmatic method to identify problems
- The model-to-model comparison and robust methodology described later will allow us to identify the possible Custom and Robust references

Figure 5: Examples of model simulated domain-level BRFs along an azimuth ring (*br-fazim*) at $\theta_v = 37^\circ$ for the pinestand model (HET07), and the two structured actual canopies HET14 and HET16. The upper figures show results in the visible band (O08) and the lower in the near-infrared band (O17).

Chauvenet Summary example (brfpp, brfop) -- 20220923

Preliminary results

2023

bhr

brfpp

Agricultural crops Short Rotation Forest HET16_SRF_UND

Wytham Wood HET51_WWO_TLS

dhr

0.4

0.1

2021

BHR

HET14_WCO_UND_*_DIFFUSE

BRFPP

View Zenith Angle (degree

DHR

🖝 flies 🔹 bess 🔸 ræytram

017

martacus

🗢 dart 🐞 dirsigS 🛥 less 🔸 raytran 🔺 wps

· less + raytran

https://www.https/pc.ac.aurops.au

=

1412

=

 \equiv

THEY BALLINGT, PLALANSES,

6.7

Several metrics have been calculated:

- on a single experiment
 <Scenario>-<Meas>.mes for
 BRF measurements
 (aggregated over θ_v, N=76)
- aggregated on λ for 1-value measurements (N = 13 or 5, bhr, dhr, fabs, ftran).

Name	Equation
BIAS	$BIAS(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)$
Relative bias	$rBIAS(X,Y) = \frac{2}{N} \sum_{i=1}^{N} \frac{(x_i-y_i)}{(x_i+y_i)}$
Root-Mean-Square Error	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i-y_i)^2}$
Root-Mean-Square Relative Error	$\sqrt{rac{4}{N}\sum_{i=1}^{N}rac{(x_i-y_i)^2}{(x_i+y_i)^2}}$
Mean Absolute Error	$MAE = \frac{1}{N} \sum_{i=1}^{N} x_i - y_i $
Mean Absolute Relative Error	$MARE = \frac{2}{N} \sum_{i=1}^{N} \frac{ x_i - y_i }{x_i + y_i}$
Renative Enfor	$\sigma_{\pi n} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$
Pearson correlation coefficient	$r = \frac{-xy}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^{N-1} \frac{-i(y_i - y)}{\sqrt{\sum_{i=1}^{N-1} \sqrt{\sum_{i=1}^{N-1} \frac{y_i}{\sqrt{\sum_{i=1}^{N-1} y_$

- Results are presented by means of their BRF(θ) and A(λ) plots and the corresponding Metrics represented by correlograms heatmaps
- MARE, RMSRE, PEARSON, RBIAS

 In this particular case *eradiate* is clearly underestimating BRFOP values obtained by the other models (N=9)

- In this particular case *eradiate* is clearly underestimating BRFOP values obtained by the other models (N=9)
- In the second case (aggr. λ) flies and dirsig5 are underestimating the DHR value in the visible and NIR, respectively.
- MARE and RMSRE highlight the misbehavior of the models
- Note: These metrics, being relative, might be driven by the higher relative values in visible bands, due to the lower Reflectance.

European

- From the web interface it is possible to remove models selectively and focus on the comparison of interest
- In this specific case models *clustering* occurs and the Chauvenet methodology, in similar cases <u>may</u> fail to identify outliers
- Additional criteria such as participation, "credibility" (ROMC), could help driving the choice in such cases.

Public results web site: an easy BRF case

 A representation of the workflow to identify reference at 1-exp level

- In this case clustering is not a problem
- The algorithm iterates to detect Outliers until at least 2-3 models agree within a desired uncertainty

Public results web site: aggregated heatmaps

- All metrics highlight this result and can be used to identify problems in the experiments by extracting the average, or even better the max|min values of specific metrics.
- Aggregated heatmaps

Lev1 Scenes vs Meas

Public results web site: aggregated heatmaps

- All metrics highlight this result and can be used to identify problems in the experiments by extracting the average, or even better the max|min values of specific metrics.
- Aggregated heatmaps (*N, avermsre, maxrmsre, …*)

European Commission

Lev2 Geom vs Band

Example: N (left) or aveRMSRE (right)

Example: {ave,max}*rmsre*

European

Commission

Entry point table (template)

Summary of Lev1 RMSRE hmaps

- Model agreement indicator of Actual is still rather lower on average than for Abstract canopies
- AveRMSRE often better than 2-5% for Abstract except for some families (home_two, hom_ani for specific brf filters)
- Rather bad values for fabs & ftran especially for homogeneous canopies
- ftran_coco (>200% systematycally) to be confirmed.
- brf_sat to be completed, and thp to be presented in terms of GAP fraction

