

The SOS-ABS radiative transfer code A Successive Orders of Scattering code including gas absorption

Bruno Lafrance, Xavier Lenot (CS-GROUP France) Philippe Dubuisson, Jérôme Riédi (LOA) Aimé Meygret (CNES)

RAMI workshop on radiative transfer modelling 7 – 9 June 2023

- > 1) Brief history
- > 2) Main features
 - Aerosols
 - Gaz
 - Surface

- > 3) How it works
 - The successive orders approach
 - Adaptation for gas simulations
- > 4) Validation
- > 5) On-going activities and outlook

HISTORY OF THE SOS CODE

HISTORY OF THE SOS RT CODE

- > SOS code
 - 1D, plan parallel RT code
 - Successive Orders of Scattering method
 - Polarized radiance of the {Earth surface – atmosphere} system
 - Reflective part of the spectrum (0.4 4 μm)
 - Mono-spectral simulations
 - > SOS-ABS code
 - SOS method coupled with the gaseous ABSorption
 - Spectral resolution: 1, 5 or 10 cm⁻¹
 - > Heritage of the OS code from the LOA laboratory

HISTORY OF THE SOS RT CODE

1974		OS code implemented in LOA laboratory			
1989		Sun-glint added	Deuzé J equatior vol. 41,	J.L, M. Herman, and R. Santer, « Fourier series expansion of the transfer on in the atmosphere-ocean system », <i>J. Quant. Spectrosc. Radiat. Transfer</i> , no. 6, pp. 483-494, 1989.	
2005		CNES decided to ensure the long-term future of the code → Redesigning the code and adding new functions			
2007		New reference p	aper	Lenoble J., M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, D. Tanré, « A successive order or scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols », <i>J. Quant. Spectrosc. Radiat. Transfer</i> , vol. 107, pp. 479-507, 2007.	
2012		First tests with LOA for including gaseous absorptions			
		Few test versions of SOS-ABS for CNES studies			
2019 -	-	SOS v6.2 (without gaseous absorption) on-line : public release / GPL v3 open source licence <u>https://github.com/CNES/RadiativeTransferCode-SOS</u>			
2023	3 Soon release of the SOS-ABS v5 to users				
GROUP 55		s ka	SOS-ABS	3S RT Code / RAMI workshop 2023 5	

SOS-ABS CODE FEATURES

FEATURES: RAYLEIGH SCATTERING

- > Molecular optical thickness
 - From user's value
 - calculated by the code $\tau_{\rm m} = \frac{P}{P_0} \times \left(\frac{84,35}{\lambda^4} + \frac{-1,225}{\lambda^5} + \frac{1,4}{\lambda^6}\right) \times 10^{-4}$
- > Phase function

GROI

moderated by the depolarization factor

$$P_{mol}(\Omega) = 1 + f \times \left[\frac{3 \cdot \cos^{2}(\Omega) - 1}{4}\right]$$

$$\approx \frac{3}{4} \times \left[1 + \cos^{2}(\Omega)\right]$$

$$f = 2(1 - \delta)/(2 + \delta)$$

 δ depolarisation factor

$$f = 0.0279$$

 $\delta = 0.0279$
 $\delta = 0.$

FEATURES : AEROSOLS

FEATURES : GAS

- > Main gases impacting the reflective part of the spectrum
 - Ozone (O₃) Carbon dioxide (CO₂)
 - Water vapor (H₂O)
 - Dioxygen (O₂)

Methane (CH₄)

- Nitrous oxide (N₂O)
- Nitrogen dioxide (NO₂)
- Carbon monoxide (CO)

- Spectral resolution: 1, 5 or 10 cm⁻¹
- 0.4 to 4.0 $\mu m~(\rightarrow$ 0.36 to 4.0 $\mu m)$
- Predefined profiles or user profile

FEATURES : GAS

GROUP

FEATURES : BRDF / BPDF

- > Land
 - Lambertian surface
 - BRDF Roujean model
 - BPDF :
 - Rondeaux model
 - Bréon model
 - Maignan model

Incidence angle

$$R_{p}^{Rondeaux}(\theta_{S}, \theta_{V}) = \frac{Fp(\alpha_{I}, n)}{4(\mu_{S} + \mu_{V})} \qquad \text{Refractive index}$$

$$R_{p}^{Bréon}(\theta_{S}, \theta_{V}) = \frac{Fp(\alpha_{I}, n)}{4\mu_{S}\mu_{V}} \qquad \qquad \nu = \text{NDVI}$$

$$C = \text{ponderation coef}$$

$$R_{p}^{Maignan}(\theta_{S}, \theta_{V}) = \frac{C \exp(-tan(\alpha_{I}) \exp(-\nu) F_{p}(\alpha_{I}, n))}{4(\mu_{S} + \mu_{V})}$$

- > Ocean
 - Fresnel reflexion on flat sea
 - Rugged sea surface → Sun glint (Cox & Munk model)

SOS-ABS : A SUCCESSIVE ORDERS OF SCATTERING MODEL

PRÉSENTATION CS GROUP | 13

- > Modelling the gas absorption
 - Coupling effect of scattering and absorption
 - Gas transmission calculated from CKD (Correlated K-Distribution) method

Lacis and Oinas, 1991

Modelling the gas absorption For a mixture of n gas species

$$T_{\Delta \nu}(u_1, u_2, \dots, u_n) = \sum_{i_1=1}^{NE_1} \sum_{i_2=1}^{NE_2} \dots \sum_{i_n=1}^{NE_n} \left[\sum_{g=1}^n exp\left(-m.k_{i_g}^g.u_g\right) \right] \times \Delta g_{i_1}^1 \times \Delta g_{i_2}^g \times \dots \times \Delta g_{i_n}^g$$

 NE_g : number of exponentials for the gas g

 i_g : exponential number

> Finer radiance calculation

Fine calculation mode option of SOS-ABS

$$L_{\Delta\nu} = \sum_{i_1=1}^{NE_1} \sum_{i_2=1}^{NE_2} \dots \sum_{i_n=1}^{NE_n} \left[\underbrace{L_{\Delta\nu} \left(\delta_{i_g}^g \right)}_{\downarrow} \right] \times \Delta g_{i_1}^1 \times \Delta g_{i_2}^g \times \dots \times \Delta g_{i_n}^g$$
$$L_{\Delta\nu} \left(\delta_{i_g}^g \right) : \text{Radiance calculated}$$
for the optical thickness of each expansion term

The exponential i_g corresponds to the transmission $exp\left(-m.k_{i_g}^g.u_g\right)$

for which the optical thickness is $\delta_{i_g}^g = k_{i_g}^g \cdot u_g$

VALIDATION

- > Comparison to ARTDECO simulations
 - DOAD RT code :
 - Adding doubling method
 - Polarisation
 - Gas absorption
 - Use of same CKD coefficients
 - Same IOP (Rayleigh, aerosols)
 - Set of scenarios
 - Spectral ranges :
 - O₃ centred on 550 nm
 - O2 centred on 760 nm
 - H₂O centred on 910 nm
 - AOT: 0 to 1 (0.0, 0.1, 0.3, 0.5, 1.0)
 - Viewing angle VZA = 0° , 30° , 50° , 70° (SZA = 50°)

ARTDECO Atmospheric Radiative Transfer Database for Earth Climate Observation

https://www.icare.univ-lille.fr/artdeco/

VALIDATION

H₂O band test

VALIDATION

O₂ band test

ON-GOING PROGRESS AND OUTLOOK

- > Improvements
 - Update of CKD coefficients
 - Finer estimate
 - Better H2O model including a concentration dependence
 - UV extension (360 nm)
 - Increase the number of models for calculating molecular optical thickness
 - Improve simulations in case of fine scattering OT vs. absorption OT (RAMI4ATM benefit)
- New validation exercise with ARTDECO
- > Publication in preparation

GPL v3 open source licence

Release this summer \rightarrow

https://github.com/CNES/RadiativeTransferCode-SOS

