

An open-source radiative transfer model for the Earth observation community

Vincent Leroy & The Eradiate Team

Rayference

RAMI workshop 2023 // Varese // June 7th, 2023

Instruments are accurate, our models don't follow

- Radiometric calibration accuracy can now get close to 1% with some satellite-borne instruments
- RTMs used to verify calibration are not accurate enough
 - Lack of 3D features 1D plane-parallel assumption: Earth is flat, no 3D surface features
 - Missing molecular absorption modelling features Lack of chemical profile update

Goal: high accuracy suitable for such use cases

ASSESSMENT OF S3A/SLSTR NADIR AND OBLIQUE Solar Band Calibration over Libya-4
AUTHORS Yves Govaerts (Rayference) DATE 2019-10-07 ISSUE 2.3 CONTRACT 400001272201/19/I-BG DELIVERY Workorder #1 Doc Rer RTIMY-WO1-2.3
COSA CONTINUES C

Goals and scope

- General-purpose 3D RTM for cal/val
 - Common platform to integrate advances from all subcommunities
 - Prioritize accuracy when selecting numerical methods and algorithms
 - Extensive, reproducible and systematic testing

Researched and traceable data and algorithms

• Get to the bottom of the state of the art, document it for the benefit of the community

Designed for interactive analysis

- Python interface
 - \Rightarrow integration in interactive computing environments
- Modern data processing chain ⇒ data-centric workflow based on NetCDF/xarray

Community-oriented

- Extensive documentation (user and dev guides, tutorials, API docs)
- Open-source, hosted publicly
- Involve community (issues, pull requests, workshops)

Architecture overview

Radiometric kernel: Mitsuba 3 rendering system

- Retargetable design
- Plugin architecture
- Great Python bindings
- Great code quality

Specific plugins

- Scattering models
- Sensors
- Volume data source

Python package

- Scene generator and pre-processor
- Simulation runner
- Post-processing pipeline

Feature overview

Surface

• Smooth surface (Lambertian, RPV, tabulated; more to come)

Atmosphere

- 1D atmospheric model
- Molecular component (standard AFGL 1986 profiles in CKD mode, custom profiles in CKD and LBL modes)
 ⇒ Any profile can be used (e.g. CAMS)
- Arbitrary number of particle components (parametrized by OT, albedo and phase function)

Fundamentals: scalar 1D radiative transfer model

Scene geometry

- Plane-parallel (PPG) or spherical-shell (SSG) geometries
- PPG as a reference
- Only SSG ensures corrects radiance estimates at grazing angles

Fundamentals: scalar 1D radiative transfer model

Measure models

- TOA radiance
 - TOA BRF accessible without additional computation (irradiance is known)
- In situ radiance
 - In situ HDRF accessible with additional computation
 ⇒ higher variance
- TOA exitance (reflected flux)
 - Total albedo accessible without additional computation
- Perspective camera

)7-06-2023

Library of spectral response functions + bring your own

Illumination

- Collimated (ideal)
- Upcoming finite-sized solar model
- Many solar irradiance spectra to choose from + bring your own

Integrator

- Stock Mitsuba volumetric path tracer (backward algorithm)
 - Next-event estimation + Russian roulette
 - Null-collision-based free-flight distance sampling

3D surface representation

Explicit 3D vegetation

- Abstract disk-based canopy builder
- Arbitrary mesh-based canopy models
- Bilambertian leaf scattering model
- Unit cell can be padded with clones
 ⇒ pseudo-periodic geometry

3D surface representation

Digital elevation model

- Automated DEM data tessellation from NetCDF elevation file ⇒ Any data source can be used (e.g. Copernicus)
- PPG and SSG support

User interface

- Based on Python programming
- Designed for usage in interactive Python session (*e.g.* Jupyter Notebook)
- Fully scriptable \Rightarrow easy to integrate in Python scientific workflow

<pre>import eradiate.scenes as ertsc import eradiate.experiments as ertxp exp = ertxp.OneDimExperiment(surface=ertsc.bsdfs.RPVBSDF(), atmosphere=ertsc.atmosphere.MolecularAtmosphere.afgl_1986(), illumination=ertsc.illumination.DirectionalIllumination(zenith=15.0, azimuth=0.0,), measures=ertsc.measure.MultiDistantMeasure.from_viewing_angles(id="toa_brf", zeniths=np.arange(-75, 76, 5), # Cover the [-75°, 75°] range with 5° azimuths=0. # Same value as SAA to cover the principal plane</pre>	<pre>[7]: results = eradi results Spectral loop [710:15 [7]: xarray.Dataset Dimensions: Coordinates: (13) Data variables:</pre>	ate.run(exp) 5]: 48/48 (sza : 1, saa : 1, w : 3, y_index :	00:05, ETA=00:00 1, x_index : 31, srf_w : 22)	0
<pre>spectral_cfg={ "seft": "sentinel 2a_msi_5"</pre>	radiance	(sza, saa, w, y_index, x_index)	float64 0.09475 0.0949	
"bin_set": "10nm",	spp	(sza, saa, w)	float64 1e+03 1e+03 1e+03	
},	irradiance	(sza, saa, w)	float64 1.412 1.39 1.349	
spp=1000,	srf	(srf_w)	float64 0.0 0.02836 0.123	8
)	brdf	(cza cza w w index v index)	float64 0.06711.0.06722	

Testing & validation

- Unit tests
- System tests with regression detection (improvement in progress)
- Benchmarking: ROMC / RAMI-V / RAMI4ATM To be extended (*e.g.* IPRT for polarization components)

ROMC DEBUG mode compares RT model simulations against already published RAMI results. To obtain unambiguous proof of an RT model's performance use the ROMC VALIDATE mode.

Application: UAV reflectance measurement simulation and exploration

S. Schunke, V. Leroy, Y. Govaerts

Reflectance measurements are used to characterize surfaces.

Many measurement methods exist, *e.g.*:

- Gonioreflectometer
- Tower-mounted radiometer
- Airborne radiometer (typically on a UAV)

Latini et al. (2021) DOI: 10.1109/IGARSS47720.2021.9554496

How does one measure reflectance with a UAV?

Did you say "reflectance"?

Problem: "reflectance" is unspecific

1. Bidirectional reflectance	TABLE 1. Proposed r $d\rho(\theta_i,\phi_i;\theta_r,\phi_r)$	TABLE 1. Proposed nome	enclature for nine kinds of reflectance*
2. Directional-conical reflectance ^a	$\rho(\theta_i, \phi_i; \omega_r)$	$= \int_{\omega_r} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_r$	
3. Directional-hemispherical reflectance	$\rho\left(\theta_i,\phi_i;2\pi\right)$	$= \int_{2\pi} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_r$	
4. Conical-directional reflectance ^a	$d\mu(\omega_i;\theta_r,\phi_r)$	$= (d\Omega_r / \Omega_i) \cdot \int_{\omega_i} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_i$	
5. Biconical reflectance ^a	$\rho(\omega_i;\omega_r)$	$= (1/\Omega_i) \cdot \int_{\omega_i} \int_{\omega_r} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_r \cdot d\Omega_i$	Which ono?
6. Conical-hemispherical reflectance ^a	$\rho\left(\omega_{i};2\pi ight)$	$= (1/\Omega_i) \cdot \int_{\omega_i} \int_{2\pi} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_r \cdot d\Omega_i$	
7. Hemispherical-directional reflectance	$d\rho(2\pi;\theta_r,\!\phi_r)$	$= (d\Omega_r/\pi) \cdot \int_{2\pi} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_i$	
8. Hemispherical-conical reflectance ^a	$\rho\left(2\pi;\omega_r\right)$	$= (1/\pi) \cdot \int_{2\pi} \int_{\omega_r} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_r \cdot d\Omega_i$	
9. Bihemispherical reflectance	$\rho(2\pi;2\pi)$	$= (1/\pi) \cdot \int_{2\pi} \int_{2\pi} f_r(\theta_i, \phi_i; \theta_r, \phi_r) \cdot d\Omega_r \cdot d\Omega_i$	

Nicodemus et al. (1977)

07-06-2023

Meet the reflectance family

Meet the reflectance family

Test scene: a simple grass field

- Grass model provides BRF with hotspot (typical of vegetated covers)
- 1D plane parallel atmosphere, monochromatic simulations at 550nm

Reference case

Simulate the BRF of the vegetated surface \Rightarrow used as a **reference** hereafter

HRDF simulation protocol

- 1. Record radiance reflected by region of interest (ROI)
- 2. Calibration: record radiance on calibrated reference panel (CRP)

3. HCRF =

$$L_{\rm ROI}/L_{\rm CRP}$$

Correct only if CRP is perfectly diffuse and measurement is instantaneous

Georgiev and Butler (2008) DOI: 10.1117/12.795931

The CRP is not perfectly diffuse

Flight duration

Non Lambertian CRP

Radiometer field of view

The sensor is not perfectly directional

The larger the FOV, the less directional the measure

Atmospheric scattering

Flight duration

Non Lambertian CRP

Radiometer field of view

The illumination is not perfectly directional

The stronger the atmospheric scattering, the less directional the illumination

Atmospheric scattering

Flight duration

07-06-2023

Non Lambertian CRP

Radiometer field of view

Atmospheric scattering

Movement of the sun due to non-zero flight duration

Acquisition is not instantaneous

Flight duration

How do the effects compare?

Simulation campaign parameters

Parameter	Value 1	Value 2
Calibrated reference panel	Lambertian	Measured BRDF
Field of view	1°	30°
Atmospheric scattering	None	Optical thickness of 0.4
Flight duration	Instantaneous	20 minutes

How do the effects compare?

Simulation campaign results

Parameter	Max rel. deviation
Atmospheric scattering	14%
Field of view	5%
Calibrated reference panel	<1%
Flight duration	<1%

Conclusions

Dominant effects:

- atmospheric scattering \Rightarrow perform measurements on a clear-sky day
- field of view ⇒ restrict the effective FOV of the instrument as much as possible

Eradiate is FOSS

Hosted on GitHub ⇒ github.com/eradiate/eradiate

- Star and watch for releases
- Get the code
- Reach out and contribute (discussions, issues, PRs)

Documentation on Read The Docs \Rightarrow <u>eradiate.readthedocs.io</u>

- Tutorials
- Full API documentation

