RAMI workshop 2023 Thursday 8 June, 09:15 – 09:35

Radiative transfer model in the generalized retrieval code "GRASP"

Masahiro Momoi (GRASP SAS, France) masahiro.momoi@grasp-sas.com

P. Litvinov, A. Lopatin, M. Herreras-Giralda, T. Lapyonok, O. Dubovik and

SRASP team

GRASP concept paper [Dubovik+21] WORKSHOP LILLE 2023

GRASP stands for Generalized <u>Retrieval of Atmosphere and Surface Properties</u>

... is one of the most advanced algorithms for deriving aerosol, gas and surface properties. This inversion algorithm is currently used by space agencies worldwide for operational products. It was originally developed for use in AERONET sun-sky radiometers.

GRASP

GRASP

GRASP community

By 2023 a total of 1256 users in 64 countries

GRASP Adoption Level

Fully GRASPified!

Treation date: 2023-06-07

General description of **GRASP**

Radiative transfer model [™][™] ≈ forward model in remote sensing inversion

Physical quantities: aerosol parameters, gas amount, surface conditions

Output: radiance (reflectance), radiative flux, brightness temperature

Particle scatterings

Dubovik et al., 2006

Surface reflectance models

BRDF

- (1) Rahman-Pity-Verstraete model (Rahman et al., 1993)
- (2) Ross-Li model (Ross, 1981; Li, X., Strahler, 1992)

BRDF

- (1) One parametric BPDF (Maignan et al., 2009)
- (2) Fresnel facet model for Gaussian surfaces (Litvinov et al., 2011)

BRDF+BPDF (Physically based models)

- (1) Cox-Munk ocean model
- (2) Land surface reflectance matrix (Litvinov et al., 2012)

Radiative transfer model [™][™] ≈ forward model in remote sensing inversion

Physical quantities: aerosol parameters, gas amount, surface conditions

Output: radiance (reflectance), radiative flux, brightness temperature

RT solution under aerosol-laden atmosphere

⇒ Highly anisotropic aerosol phase function

Correction methods over a black surface

What about sun-glint over ocean surface?

13

Sun-glint correction using PⁿIMS method

PⁿIMS w/ sun-glint correction

Waquet-Herman PⁿIMS-method

Preliminary: AERONET, Banizoumbou, 2008

Fourier truncation order M = 10

Preliminary: POLDER, Abu_Al_Bukhoosh, 2008

Fourier truncation order M = 7

"PⁿIMS w/ glint cor." improved R, RMSE, N. of GCOS criteria.

The speed is PⁿIMS w/o glint < Waquet-Herman < PⁿIMS w/ glint << w/ glint truncation

 $(\mathsf{P}^n\mathsf{IMS} \mathsf{M}=20)$

GRASP

OPEN

GRASP

Join us!

By 2023 a total of 1256 users in 64 countries

GRASP Adoption Level

Fully GRASPified!

Creation date: 2023-06-07