

DART: a 3D radiative transfer model for studying natural and urban surfaces

Yingjie Wang^a, O. Regaieg^{a, b}, N. Lauret^a, J. Guilleux^a, E. Chavanon^a, Z. Zhen^{a, c}, P. Boitard^a, R. Démoulin^a, T. Nguyen^{a, b}, H. Jin^d, X. Yang^d, T. Yin^e, A. Mkaouar^f, R. Janoutova^g, R. Paugam^h, F. De Boissieuⁱ, A. Kallel^j, Z. Malenovský^b, J.-P. Gastellu-Etchegorry^a

^a CESBIO, Toulouse, France
^b University of Bonn, Bonn, Germany
^c University of Jilin, Jilin, China
^d CAS, Beijing, China
^e Hongkong Polytechnic University, China

^f NASA, USA
^g CzechGlobe, Czech Republic
^h CERTEC, UPC, Spain
ⁱ TETIS, Montpellier, France
^j CRNS, ATMS, Sfax, Tunisia

1. Introduction to DART model

2. DART applications

3. Conclusion

1. Introduction to DART model

2. DART applications

3. Conclusion

DART model: an overview

- History: developed in CESBIO since 1992 by 10 scientists. Patented in 2003
- Code: 500,000 lines C++ (RT), 100,000 lines Java (GUI) + Python (Tools)
- Accuracy (relative difference ε , RMSE) assessed with:
 - Monte Carlo models (RAMI-III experiment): $\varepsilon_{\rho} \leq 1\%$ (*Widlowski et al., 2007*)
- Measurements: $\varepsilon_{\rho} \leq 2.5\%$ (Landier et al., 2018), $RMSE_{T_B} < 2K$ (Sobrino et al., 2011)

DART: an overview

DART Discrete Anisotropic Radiativo Transfor **Radiative Transfer**

(Wang and Gastellu-Etchegorry, 2021; Yang et al., 2022; Regaieg et al., 2023)

DART-EB (since 2020)

Scene: 1D (3D scene modelling is on-going)

EB modelling: Photosynthesis, heat flux, turbulence, fluorescence, evapotranspiration, *etc.* + **RT (DART)**

Products: Vertical heat flux, temperature profile, ...

1. Introduction to DART model

2. DART applications

3. Conclusion

DART applications

Research works with indication of projects:

- Vegetation functioning (hyperspectral): RedEdge, HyPOS (ESA)
- Urban radiative budget: H2020 UrbanFluxes, ERC Urbisphere (EU)
- AI algorithms: DIAPOS (CNES)
- Normalization of satellite images: COPA (ESA)

Preparing satellite missions:

- Sentinel-2 NG (ESA): trade-off "Several satellites vs. Large FOV"
- TRISHNA (CNES-ISRO), LSTM (ESA): optimal TIR bands, DART scenes used as references, correction of directional effects in TIR images
- Surface Topography and Vegetation (STV: NASA): LiDAR, stereo, ...

Community code certification (French National Research Centre, **CNRS**): to facilitate scientific collaboration on research domains using DART (Submitted)

Remote sensing images

Impact of vegetation growth stage and field orientations on satellite signal and radiative budget. Projects LSTM & S2 NG (ESA)

	Maize stage (BBCH scale)					
Plant height	0.92	1.28	1.55	1.79	2.04	2.24
Number of leaves	14	14	19	19	22	22
LAI	1	2	3	4	5	6
Leaf max. area	0.105	0.21	0.315	0.42	0.525	0.63

Remote sensing images

DART scenes used as ref. \Leftarrow High resolution images. Project S2 NG (ESA) (*Gastellu-Etchegorry et al., 2022*)

	3 km				
	- ~	Resolution: 30 m			
Google map (Sept. 2018)		DART Simulation			

Remote sensing images

Urban short wave and long wave radiative budget. Project Suabe (Belgium)

DART image: Brussels city (17 km x 17 km, no trees) + Atmosphere + Clouds 16

Chlorophyll fluorescence

Impact of wood on SIF emission and observation at 740nm: Eucalyptus forest

Atmosphere

Data sources: Earth DEM (GEBCO 2022), Land cover (EarthEnv), Clouds cover (Copernicus EUMETSAT), Atmosphere profile (AFGL: USSTD76)

No Atmosphere

Spherical Atmosphere (E. Chavanon) 19

Lidar

Simulation of airborne and satellite LiDAR signals of tropical forest (Paracou, Guyana) in order to prepare the satellite mission LEAF (LiDAR) (*Durrieu et al., 2019*)

Airborne Riegl LMS-Q780

DART: Measurements \Rightarrow optical properties TLS \Rightarrow 3D architecture

Lidar

Design next generation instrument ⇒ HR global topography. Project STV (NASA)

DART gives images and (x, y, z) coordinates of scene elements \Rightarrow NASA uses DART to define the optimal satellite configuration

Polarization

Specular reflection & Polarization

Stokes vector: [I, Q, U, V]

Future polarimetric satellite missions: METOP-SG-A (ESA) OTB-2 (NASA)

(Wang Yingjie, 2022)

Inversion

Inversion

(Zhen et al., 2021)

Sentinel 2 (B2, B3, B4)

DART simulation with OP maps

Deep learning

Training an **AI algorithm** to detect palm trees in high resolution satellite images. Project DIAPOS (CNES)

100,000 DART image of a forest plot with Attalea Maripa

Deep learning

Preliminary evaluation: Detection precision 75 %

Automatic detection of palm tree in high spatial resolution satellite image.

(Data from ESPACE-DEV, IRD)

Fire

- **FDS** (Fire Dynamics Simulator) model \Rightarrow 3D temperature distribution 3D soot/gas density
- **DART** \Rightarrow Remote sensing observations (TIR camera, satellite)
 - \Rightarrow Study the **fire radiative power** from satellite observation

DART simulation from R. Paugam (UPC), 50s after fire ignition

Urban surface temperature

SOLENE model \Rightarrow 3D energy balance (2 broad bands) \Rightarrow LST + T*air* **DART** model \Rightarrow hyperspectral RTM (more accurate RB) \Rightarrow RS observations

Impact of urban surface heterogeneity on LST estimation from TIR satellites (TRISHNA, LSTM)

Brightness temperature at 4 view zenith (vz) angles

Strasbourg, cathedral district, 15th June 2021, 9h UTC

28

1. Introduction to DART model

2. DART applications

3. Conclusion

Conclusion

DART:

- Efficient & accurate for simulating 3D surface observations (TIR, SIF,...) and radiative budget at various spatial and time scales
- 2) Adapted to a wide range of applications: inversion of satellite data, preparation of satellite mission, AI, fire, ...
- 3) Easy to chain with process models (SOLENE, SCOPE,...)

On-going work

- (1) 3D modelling of energy balance of vegetation (DART-EB) (temperature distribution ⇒ TIR obs., RB)
- (2) Differentiable radiative transfer (Jacobian) (uncertainties, better inversion)
- (3) Technical: georeference, NetCDF format, GPU, ... (preparing satellite missions, massive simulation)

THANK YOU

DART is freely available for research and education.

Contact:

jean-philippe.gastellu@iut-tlse3.fr nicolas.lauret@univ-tlse3.fr yingjie.wang@univ-tlse3.fr (J.-P. Gastellu-Etchegorry) (Nicolas Lauret) (Yingjie Wang)

